
The Big-Step Operational Semantics of the Circuit

Elements of a Hardware-Independent Parallel

Intermediate Format

by

Sean Halle
seanhalle@yahoo.com

Abstract

This paper presents the operational semantics of the circuit elements of an intermediate

format that has four properties. The first property is that the format does not have the con-

cept of a persistent processor, but rather generates short-lived processors, facilitating the

same program to run unchanged on one processor or many. Second, the code-length and

complexity of a schedulable work-unit is automatically adjusted to be efficient on the hard-

ware when the application is installed. Third, the data structures used in the program are

divided at run-time in partnership with a hardware-specific scheduler via an application inter-

face. The application hands a data-structure to an intermediate-format symbol that responds

with how many pieces to divide the data into, each of those pieces can then repeat the pro-

cess. Fourth, easy-to-use high level languages exist that compile down to the format,

including a backwards compatible variant of Java.

An application expressed in the intermediate format takes the form of a recipe to build

such a “dynamic” circuit. Each operator in the circuit has an optional guard and a short,

atomic, non-loop-containing segment of sequential code. The operator spawns a processor to

reduce a copy of its code for every set of data that makes it past the guard. Loops are cre-

ated via wiring. A wire represents a causal dependency.

The processor invariant property arises from the spawning behavior of the operators. The

implementation of the format is free to decide how many spawned copies of an operator

overlap in time. Meanwhile, the ability to adjust complexity of schedulable units of code

arises from the short atomic operators. The atomicity and the spawning behavior force all

control data to be packaged with the working data as it moves from operator to operator

(each operator has only local, transient, variables). This allows a boundary to be drawn

around any arbitrary segment of the circuit and the inside mapped onto a sequence of opera-

tions (with inserted tests), suitable for execution on a sequential processor.

The semantics of the circuit elements are presented in a modified form of Big Step seman-

tics. Companion papers state the semantics for building the circuit, and give the semantics of

the sequential language used to state the behavior of operators.

1 Introduction

The difficulties historically associated with parallel programming are becomming increasingly
urgent to solve. A practical solution requires achieving a satisfactory level in the goals of “write
once, run high-performance anywhere”, high programmer productivity, and wide-use (meaning an
accepted, uniformly implemented, standard).

1

High performance has required the application programmer to have knowledge of the hard-
ware and make choices of how to write the application based on that knowledge. This both
reduces programmer productivity and ties the application to a certain range of hardware that it
runs well on. It reduces productivity, in part, because the hardware is often quite complex, cre-
ating a steep and long learning curve for application programmers. In practice, programmers
either lose productivity while learning the hardware and while tweaking the code for that hard-
ware, or else they, more often, only gain a minimal working knowledge of it and don’t produce
especially efficient code. Either way, source-level modifications are necessary to update the soft-
ware for new hardware, or to run the software on other machines, both of which are costly and
slow.

Because of these problems, and more, a solution is desired whereby a program can be written
once and have it run high performance on a number of different machines from the same dis-
tributed installation-bundle.

Many attempts to achieve this have been tried [18] [10] [13] [4] [3] [11] [2] [12] [17] [8] [14] [15]
[7] [1] [6] [16] [5]. However, better solutions are still desired.

This paper gives the formal semantics of an intermediate format that can be used as one com-
ponent in a software platform that focuses on the write-once run high-performance anywhere
goal.

The syntax of the intermediate format describes how to build a circuit. The constructed cir-
cuit performs the behavior stated by the original program. The circuit spawns short-lived pro-
cessors that each apply one function to one set of data. Each function is straight-line imperative
code (no loops), so a spawned processor executes a short, atomic, segment of sequential code.

The Big Step operational semantics are extended, then used to state the semantics of the cir-
cuit elements constructed by the proposed intermediate format, part II gives the semantics of the
straight-line code executed by the function-processors spawned by the circuit.

Section 2 describes the elements of a circuit and how they work. Section 3 explains the
extensions to the Big Step notation. Section 4 gives the formal semantics of the circuit elements
in that notation. Section 5 discusses related work, and section 6 concludes.

2 The Circuit Elements

A circuit is composed of units connected by wires. Two kinds of unit are proposed: function-
units and processor-units. Function-units are composed of three circuit elements, and spawn
short-lived function-processors. Processor-units are black boxes used to communicate with pro-
cessors outside the circuit’s name-space. The circuit has its own name-space. Each unit has a
name in the circuit’s name-space, and each input is a sub-name of the unit. Wires invoke the
names of inputs of units. The placement of a wire tells the output of the up-stream unit the
name of the input of the down-stream unit. The up-stream unit uses the circuit’s name-space
mechanism to place each output-datum into the named input of the down-stream unit.

Terminology In the terminology[9] we adopt for this paper, a running program is considered a
processor. The program itself is considered a specification of a processor. The run command
uses the specification to create a derived processor that behaves according to the specification.

A created (derived) processor, call it processor A, can have parts of its behavior performed by
other processors. The processors reachable from processor A’s name-space are said to be in the
name-space of processor A. Any of them may be called upon to perform a sub-problem for pro-
cessor A. In addition, the other processors can communicate with each other by using processor
A’s name-space mechanism. For example, a network is a name-space mechanism, as is a bus
inside a silicon-chip, and so can a physical memory be used as a name-space mechanism.

2 Section 2

Processor B, is said to be contained within processor A if B is in the name-space of A. B can
then use A’s name-space mechanism to communicate with any other processors in A’s name-
space.

In order for processor A to communicate with a processor that is outside its own name-space,
it must use a containing processor’s name-space. For example, in order for one running program
to communicate with another, it must use the running OS instance’s name-space mechanism,
such as an inter-process communication call. Both running programs are processors in the run-
ning OS instance’s name-space, and the inter-process call is the mechanism that implements the
name-space’s behavior.

Processor Units A processor-unit is used in a circuit the way an inter-process call is used. It
allows a running program to communicate with any other processor contained in the OS
instance’s name-space. A processor-unit’s behavior is implemented for specific hardware as part
of implementing the intermediate format for that hardware.

To use a processor-unit to communicate, first give it the name of the target processor. This
causes the target processor to be “connected” to the processor-unit symbol. Then, hand com-
mands to the processor-unit, and out from the processor-unit come responses from the target pro-
cessor.

All OS services are gained through processor-units. An application uses the name of an OS-
supplied processor to connect to that processor. The application then sends commands to the
OS-service-providing-processor and receives responses via the processor-unit symbol.

Function Units A function-unit’s behavior is defined by the programmer. It contains three
primitive circuit elements: a coordination-element, a function-generator-element, and an output-
element.

The coordination-element deals with data coming in to the function-unit. The function-gen-
erator-element creates short-lived processors, each of which is handed a set of inputs from the
coordination-element. Each created processor executes the function-code on one set of inputs,
and thereby creates outputs. When the segment of code is done, the outputs are handed to the
output-element and the processor disappears. The output element then distributes the outputs
to the coordination-elements of connected down-stream units.

2.1 Details of Units

2.1.1 Function Unit Details.

The coordination-element contains one or more pools of input-data, one pool for each wire
coming in to the function-unit. When data enters, it comes off a wire and enters the corre-
sponding input-pool.

The coordination-element includes a guard boolean. It inspects the data in its various input-
pools, looking for any combination that satisfies the boolean. The boolean was written by the
programmer. Its terms are locations in the data-structures taken from the input-pools. The
coordination-element consumes the input data (removes it from the input pools), generating sets
of input-datums, such that every set satisfies the boolean.

Each input-set is put in the function-generator-element’s pool of input-sets. The function-
generator element removes input-sets and creates a function-processor for each. A function-pro-
cessor is created containing a copy of the code the programmer wrote for the function-unit. It
performs the code-segment on the input-set, constructing a set of output data in the process.
When the code is done (reduced to null), the output-set is placed in the output-elements’ pool of
output-sets and the function-processor disappears.

The Circuit Elements 3

The output-element consumes the sets from its pool. Each element of the set is a down-
stream-input-name and value pair. The output-element communicates the output values by
placing each value into the input-pool of the named input of the down-stream unit.

Ordering The overlap of function-processor existence is not defined. Existing one after the
other is just as valid as millions existing together, all performing overlapped computation. Like-
wise the order of input-sets being taken out of input-pools is not defined, nor are any a-priori
constraints on which datums may be grouped together. The only such constraints are the ones
the programmer specifies via the boolean in the coordination-element.

The only ordering defined is causality. Datums arrive in input-pools before they appear as
elements of input-sets. A function-processor is created after its input-set appears in the function-
generator-element’s input-set-pool. Datums in output-sets arrive in the output-set pool of an
output-element before they arrive in input-pools of down-stream coordination-elements.

2.1.2 Processor-Unit Details.

Processor-units are black-boxes. They only have input-pools defined, one input-pool for each in-
coming wire. An up-stream unit places datums into the input-pool named by the shared wire.

Up-stream units have no means to tell how many datums are in down-stream input-pools, for
any units, including processor-units.

Output datums that come from processor-units simply appear in the input-pools of down-
stream units. No timing or ordering exists other than causality. A response datum will not
appear in a down-stream input pool before the corresponding command-datum is placed in an
input-pool of the processor-unit.

2.2 Memory model

The memory is split into multiple independent name-spaces, called containers. Each container is
analogous to a separate virtual-memory space, and is a separate memory-processor. A container
is denoted with the standard symbol for a store: σ.

Containers have one or more fields. Each field may hold either a primitive data-type value or
the name of another container.

Figure 1. Each box represents a container, which is a separate address space (separate memory-pro-
cessor). The labels above the boxes are the names of the address spaces (processors). The labels to the
left of each box are the addresses. To the right of each address, inside the box is the memory contents.
For example, in the address space named “Container1”, the address “left_child” contains the name of
another container, “Container7”. Container1 has a tag location. The tag value is the symbol “piece66”.

4 Section 2

2.3 Computation Sequence

The basic sequence of computation is:

→ Containers land in the input pools inside a coordination element

→ The coordination-element performs, as one atomic operation:

− chooses a set of containers from the input pools that satisfies the boolean

− creates an empty Function Execution Instance (FEI)

− creates an empty local-store, with parameter locs and temp vars, in the new FEI

− places the chosen input containers’ names in the local-store’s parameter locations

− places the FEI in the function-generator-element’s FEI Pool

→ The function-generator-element performs, as one atomic operation:

− chooses an FEI from the FEI pool

− places a copy of the function syntax-string into that FEI

− creates a processor to reduce the function syntax-string, and starts it

→ The created processor does, as one atomic operation:

− reduces the function syntax-string

− during reduction, modifies the temporary variable locations in the local store

− during reduction, may modify the containers reachable from the input-set

− during reduction, adds output-pairs to the output locations in the FEI

− when reduction is complete, places the FEI in the output-element’s pool

− the created processor then disappears

→ The output-element performs, as one atomic operation:

− takes an FEI from its pool

− takes each pair from the output locations

− looks at the name of the pair’s destination input-pool

− places the pair’s value into that input pool

− when all output-pairs have been removed, deletes the FEI and all its stores

3 Modifications to the Big Step Semantics

3.1 Why New Notation?

The proposed intermediate format uses concepts that are not representable with the standard big
step notation.

In particular, notation is needed for the following concepts:

− name-spaces

− name-spaces that contain other name-spaces

− a root name-space (root for the circuit)

Modifications to the Big Step Semantics 5

− processors communicating across name-spaces

− the concept of derived processor, defined as a collection of: a name-space, a specification, a
deriving processor, and a local state. The deriving processor derives the behavior of the
specification, which causes the local state to be modified and communication events to be
generated. Local state includes bookeeping information used by the deriving processor, a
lookup table, received data, and a working-pattern-holder.

− Distinction between stores and name-spaces

− A means of locating name-spaces and stores starting from the circuit’s root name-space

− A compound name that indicates a traversal of name-spaces

− A store’s name as a compound name that starts with the circuit’s root name-space

− A means of matching variables to segments of a compound name

− A represention of a circuit-element, which does not reduce, that fits into the framework of
reduction rules and syntax-directed semantics

− A notation to distinguish between a store itself, the compound name of a store, a rule-
variable that instantiates to a store, and a rule-variable that instantiates to the compound
name of a store

− A notation to indicate whether a rule operates on the compound name of a denoted store,
operates on the store entity, or operates on the contents of the store

− A means to instantiate one rule-variable to a portion of the rule-stated name of another
variable

− Reduction rules that have an imperative nature. The antecedents have side-effects, and
are evaluated, within the rule-statement, top-down left-to-right (this implies that the
derived processor must have bookeeping state that the deriving processor uses during
reduction of a single rule)

− A notation for potential modification via side-effect, from one part of a rule to another

− A notation for the creation of a derived processor

3.1.1 Variable substitution and instantiation

Multiple levels of instantiation may take place within a single rule. For example, in “σIPj ”, two
levels of instantiation are taking place. First the “j” is replaced inside the syntax-string of the
variable *name* then, that name is instantiated to a value. For example, the name “σIP1”
instantiates to a value. This is the same value that “σIPj ” instantiates to when j has been instan-
tiated to 1. First, j instantiates to 1, then σIPj instantiates to σIP1, then σIP1 instantiates to
some value.

3.1.2 The Root Name Space, R, and the set of all processors reachable from root, R

A name-space is part of a processor. A circuit, as a whole, is a processor, and so it has a name-
space, called the root name-space and is denoted as R. The set of all processors reachable from
the circuit’s root name-space is denoted R.

A store is a processor that has write and read commands. So, all stores used in the circuit’s
behavior are reachable from R, and are included in the set R.

Multiple types of store exist in the circuit:

− those that hold program-syntax while it is being reduced

− those that are created and destroyed explicitly by program constructs (containers)

6 Section 3

− local stores that hold the parameters and temporary variables of a generated-function

− stores inside a derived processor, that the deriving processor uses to communicate values
from one part of a rule to another

− and so on

3.1.3 Compound names

Each store has a name that its containing name-space uses to communicate with it. That name-
space is in turn inside another name-space which is inside another and so on, up to the circuit’s
root name-space. The sequence of names of name-spaces is called a compound-name. Here’s an
example of a compound name: R: :Fn: :myFunc: : Inst8: :FEIP: : ID3: :OutputStore.

The fields of a compound-name are separated by :: making a directed graph structure, where
each field specifies an edge in the graph. R: : represents the root name-space, and begins the
compound-name of every processor (store) in the circuit. Each field following the R: : is the
local name of a name-space. So, “Fn” is a name recognised by the root name-space. The thing
communicated with by using the name “R::Fn” is the name-space that contains the names of all
the function-units in the circuit. If the intermediate format has a function-unit
named “myFunc1” in it, then “myFunc1” will be a name recognised by the “R::Fn” name-space.
Likewise, specifying “R: : Fn: : myFunc1” communicates with the name-space that knows all the
instances of that function, and so on.

As an example, R: : Fn: : myFunc1: : Inst4: : FEIP: : ID23: : OutputStore is the compound-name
that communicates with the output store of the 23rd generated function of the 4th instance-in-
the-circuit of the myFunc1 function.

A name-space is inside a processor, so technically, saying that a compound-name communi-
cates with a name-space is not correct. The communication is actually with the processor that
the name-space is a part of. We usually say the name-space is communicated with when the pro-
cessor that name-space is part of has no meaniful commands, it’s only use is communication via
the name-space.

For the curious, the circuit’s root name-space is in turn inside the OS instance’s name-space.
The OS instance is a processor in and of itself, and exists inside multiple levels of name-space
that are the local area network, wide-area network and the internet, if it is connected. If it is not
connected, then its physical presence acts as a default name (in the “Universal” physical-name-
space).

3.1.4 Stores

σ represents a store, which is a type of processor that only has write and read commands. In
syntax-driven semantics, a store can be considered a syntax-string of name-value pairs plus a set
of store-processor primitives for generating unique new names, generating new pairs, deleting
pairs, changing the value of a pair whose name matches a given name, and returning the value of
a pair whose name matches a given name. Giving a name, or value, or other command to a store
is communicating to it. Receiving a returned value is communication from the store.

3.1.5 Black board braces: operating on the compound-name vs the processor named

Black board braces appearing in a rule indicate that a compound-name itself is being operated on
by the rule, rather than the processor (name-space, store) named. For example R: : Fn: :
myFunc1: : Inst4: : FEIP: : ID23: : OutputStore is the compound-name of the output store of the
23rd generated function of the 4th instance-in-the-circuit of the myFunc1 function. When this
name appears in a rule, it means “communicate with the thing named by this compound-name”.
However, sometimes one wishes to write a rule that operates on the name-itself. In such cases,
one places the name inside black board braces like this:

Modifications to the Big Step Semantics 7

JR: :Fn: :myFunc1: : Inst4: :FEIP: : ID23: :OutputStoreK
Anything placed inside black board braces has the meaning that the compound-name itself is

operated on. For example, if “σo” appears in a rule, it means the contents of the denoted store is
what the rule operates on. However, if it appears as “JσoK” then the compound-name used to
communicate with that store is what the rule operates on.

So, if one desires to explicitly affect which store a σ in a rule instantiates to, or retrieve the
compound-name to that store, σ is placed inside black-board brackets, like this:

JσK
To instantiate σ to a particular compound-name, do this:

JσoK=JR: :Fn: :myFunc1: : inst4: :FEIP: : ID23: :OutputStoreK

3.1.6 Rule-variables that mean a compound-name rather than the processor named

Sometimes, one desires a variable in a rule to be instantiated to a compound-name or part of a
larger compound-name. This form of variable always means “operate on the name itself not what
the name is used to communicate with”. Such variables appear in black board type, like this:

a

During reduction of a rule, such a variable is replaced by its instantiated compound-name
string in the syntax-string being reduced.

Because σ represents communication with a store, the form “σ” cannot be used to instantiate
the compound-name of the store to anything in the syntax-string being reduced. That is the
purpose of a.

To instantiate an a to the compound-name that retrieves σ, do this:

a= JσK

When appearing in a rule, this expression could have other meanings as well: If both σ and
a were previously instantiated and have different values then this expression is false. If neither
is instantiated it is likewise false. If both were instantiated and have the same value then this
expression is true. If only one was previously instantiated then the other is instantiated to the
same value and the expression is true.

The syntax R(a) means communicate with the processor denoted by the compound-name.
So, “σ” appearing in a rule is the same as “R(a)” appearing in a rule when a= JσK is true.

Three equivalent ways of specifying communication with a store (assuming a= JσK is true):

σ or R(JσK) or R(a)

3.1.7 Wild cards in compound-name strings

JR: :Fn: : {f}: : Inst{i}: :FEIP: : ID{??}: :OutputStoreK means all compound-names that match the
pattern inside the black-board-braces. The f was previously instantiated to the name of a func-
tion. The i was instantiated to the number of an instance of that function. However, any
number following ID will match. The remaining terms are literals and match exactly. Thus,
this expression means all compound-names of output stores, that have the compound-name
prifix “R: : Fn: : ” followed by whatever f instantiated to, follwed by “Inst” then whatever i instan-
tiated to then “: : FEIP: : ID” then any integer, then “::OutputStore”. The ?? inside the curly
braces match to any integer.

3.1.8 Literal strings

The term ′′numOutputs′′ appearing in a rule is a literal string. What’s inside the quotes is the
set of symbols that the rule matches to verbatim (“match” happens in whatever symbol-embodi-
ment is used by the deriving processor that is reducing the rule).

8 Section 3

3.1.9 Instantiating rule-variables via Wild Cards

As an example of use, in “σO ∈ R(R: : Fn: : {f}: : Inst{i}: : FEIP: : ID{?id?}: : OutputStore)” the
R(R: : Fn: : {f}: : Inst{i}: : FEIP: : ID{?id?}: : OutputStore) resolves to the set of all stores whose
names match the pattern. From this set, one store is chosen and JσOK is instantiated to its
name. At the same time, id is instantiated to what comes between “R: : Fn: : {f}: : Inst{i}: :
FEIP: : ID” and “: :OutputStore” in the name instantiated to JσOK.

3.1.10 Matching to function names

f(x1, � , xn) below the line of a rule will match to any function-name followed by “(” followed by
a “,” separated list of names, followed by “)” The function-name instantiates into f, each i sub-
script in xi instantiates to a number, and each resulting x1, x2 and so on instatiate to a param-
eter-name, and n instantiates into the number of parameters. Thus, a function with any number
of parameters will match to this form.

3.1.11 The Meaning of m

The symbol m has the same semantics as ⇓ except that the RHS must always be an exact copy of
the left-hand side, and the rule is applied again to this result ad infinitum. It also means side-
effects happen atomically, via a transaction. If any part of the rule or any sub-rules fail, all side-
effects are rolled back. The side-effects update to the set of stores affected in one atomic update.

The ordering of datums being consumed from input pools cannot be predicted. However, it is
a definite order. Whatever the order that actually occurs, all antecedents hold with that order.

Rules of this type have side-effects within the rule itself. The order of the antecedents mat-
ters. The antecedents are “evaluated” top-down and left-to-right.

Because the left and right sides of m are always the same, and the rules are defined as “the
antecedents hold in the order of post which actually occurs”, then, simultaneously, many copies of
the same m rule can post. Their antecedents will all remain valid.

The requirement that antecedents are valid in the order of actual posting is satisfied by
choosing mutually-exclusive sets of data that each rule-reduction “consumes”. In other words, a
rule-reduction removes a set of datums from the pools in a coordination circuit element.

3.1.12 The Meaning of ∗

R ∗ means “zero or more modifications to R”. R ∗ represents the same set of processors, each
with the same state, as just R except that one or more processors, usually stores, may have mod-
ifications. The ∗ version always appears on the right-hand side of a rule, with a corresponding
un-starred version on the left. This arrangment has the meaning that some portion of the rule
might or might not have modified state of a processor in R. The antecedents of the rule will
indicate where the modification may have been performed. A ∗ indicates that an effect of the
rule, if it has happened, has happened by side-effect. Another way of viewing side-effects is as a
communication event between separate processors. Thus, the ∗ is indicating that the rule’s
effects happen via communication between processors. The ∗ designator may also be applied to
a σ (each store is a separate memory-processor).

4 The Circuit Element Rules

The new primitives introduced:

The Circuit Element Rules 9

To get a name that is unique from all the others in the circuit, but matches a pattern:

generateUniqueNameMatching JR: :Fn: :myFunc1: : Inst4: :FEIP: : ID{?Unique?}K

To bring a new memory processor (store) into existence:

generateTheStoreR(R: :Fn: :myFunc1: : Inst4: :FEIP: : ID23: :LocalStore)

To change the compound-name of a given processor (ie, move it):

moveStoreFromTo (R: :Fn: :myFunc1: : Inst4: :FEIP: : ID23: :OutputStore, R: :Fn: :myFunc1: :
Inst4: :OP: : ID23)

which moves an output store from the Function-Execution-Instance pool of the 4th instance of
myFunc1 to the OuputPool that lives inside the Output Element of that instance of that func-
tion.

To destroy a store that σ instantiates to, do this:

deleteStoreR(JσK) or deleteStore σ or deleteStore R(a)

To add a name-value pair to the output-store, that has the given name but empty value:

addPairNamed(′′out2′′) toσO

To create a new derived processor:

syntax− string− of− func,myFunc1, 4, 23, σx, σls, σO,R

This creates a new derived processor that exhibits the behavior of whatever “syntax-string-of-
func” is, and gives it a compound name with myFunc1 for function-name, 4 for instance-number,
and 23 for ID number.

4.1 Coordination Circuit Element

(note f, i, andn are instantiated via matching to the pattern under the line)

generateUniqueNameMatching JR: :Fn: : {f}: : Inst{i}: :FEIP: : ID{?Unique?}K ⇓ id (primitive)
generateTheStoreR(R: :Fn: : {f}: : Inst{i}: :FEIP: : ID{id}: :LocalStore)⇓ JσlsK (primitive)

∀j ∈ [1� n].(σls(xj) =σIPj(αIPj) | (σIPj ∈ R(R: :Fn: : {f}: : Inst{i}: : IP{??}) ∧
σIP j ∈ σinst(

′′InputPoolsDraw ′′ + j +′′From ′′) ∧
αIP j ∈ addressesIn σIPj ∧

(σIP j , αIPj) � AIP)) where AIP is the set of all input-pool, addr pairs

that have been assigned to a local store before
the point at which this atomic reduction posts

∀i∈ [1� n].(ai = σls(xi) ∧ JσiK =ai) (the σi are the containers making up the input-set)
A = σinst(

′′CoordAssertion′′) (A is the “guard” boolean)
σ1,� , σn � A (the data reachable from the input set must satisfy the guard boolean)
———
〈 ′′CoordElementOf ′′ f(x1,� , xn) ′′instance′′ i,R〉 m 〈 ′′CoordElementOf ′′ f(x1,� , xn) ′′instance′′ i,R∗ 〉

10 Section 4

4.2 Function-Generator Circuit Element

JσlsK∈ JR: :Fn: : {f}: : Inst{i}: :FEIP: : ID{?id?}: :LocalStoreK (σls is chosen & stays same for rest of rule)
(note about id: the instantiated value of σlswill have the same value of ID in its ID field as what id instantiates to)
JσinstK = JR: :Fn: : {f}: : Inst{i}: : InstanceContextK
∀i∈ [1� n].(ai = σls(xi) ∧ JσiK =ai) (the σi are the containers making up the input-set)
A = σinst(

′′CoordAssertion′′) (A is the “guard” boolean)
σ1,� , σn � A (the data reachable from the input set must satisfy the guard boolean)

generateTheStoreR(R: :Fn: : {f}: : Inst{i}: :FEIP: : ID{id}: :OutputStore) ⇓ JσOK
m = σinst(

′′numOutputs′′)
addPairNamed(′′out′′ + i) to σO | ∀i∈ [1�m] (create a name-value pair with name, but null value)

〈# σinst(
′′FuncBody ′′), f, i, id, σls, σO,R〉 ⇓ 〈R∗ 〉

moveStoreFromTo (R: :Fn: : {f}: : Inst{i}: :FEIP: : ID{id}: :OutputStore, R: :Fn: : {f}: : Inst{i}: :OP: : ID{id})
deleteStoreR(JσlsK)
—————————————————————————————————-——————————————
〈 ′′FunctionElementOf ′′ f(x1,� , xn) ′′instance′′ i,R〉 m 〈 ′′FunctionElementOf ′′ f(x1,� , xn) ′′instance′′ i,R∗ 〉

4.2.1 Create Derived Processor Rule

prim# :{Make derived processor’s state, which is a temporary store (different from σls)
Place syntaxString, f, i, id into the temporary store.
Pair to the store a deriving processor that accepts the interface of the syntaxString’s terms-of spec.
Cause reduction of syntaxString to start.
Ouput operations in the syntaxString place name-value pairs into σO, (which communicates them).
Reductions continue until reach null string (else exception).

When reach null string:
delete temporary store
de-assign deriving processor (if it persists, then it’s freed, else it dies)

}
——
〈# syntaxString, f, i, id, σls, σO,R〉 ⇓ 〈R∗ 〉

The temporary store is the state of the derived processor. Because a new derived processor is
created for each input-set, multiple copies of the same function-syntax-string can be reduced
simultaneously without interference.

4.3 Output Circuit Element

JσOK∈ JR: :Fn: : {f}: : Inst{i}: :OP: : ID{?id?}K
(id instantiates to the value in the ID position of the name of the σO chosen)

JσinstK = JR: :Fn: : {f}: : Inst{i}: : InstanceContextK
m = σinst(

′′numOutputs′′)
∀i ∈ [1�m].(JσIPiK =ai | ai = σinst(

′′out′′ + i) ∧ ai� null) (σIPiis null otherwise)
∀j ∈ [1�m].(σIPj(aj) =aj | σIPj � null ∧ aj = σO(′′out′′ + j) ∧ aj � null ∧ aj = generateAddrIn(σIP j))
deleteStore R(JσOK)
———
〈 ′′OutputElementOf ′′ f(x1,� , xn) ′′instance′′ i,R〉 m 〈 ′′OutputElementOf ′′ f(x1,� , xn) ′′instance ′′ i,R∗ 〉

The Circuit Element Rules 11

5 Related Work

Large Grain Data Flow has a similar structure. However, the proposed intermediate format gen-
eralizes the semantics of data flow by introducing guards, gains benefits from only allowing
straight-line segments of code inside an operator, has the notion of independent un-ordered sets
on wires rather than synchronized ordered sets across wires, limits operation-code to only local
variables, includes bookeeping information to define independent tasks within the data passed
between operations, has the application-to-run-time-scheduler direct interface, and spawns pro-
cessors to perform the behavior of the operator. These extensions support the three goals,
whereas classical Data-Flow and Large Grain Data Flow lack features or have features that block
attaining the goals.

The Java Virtual Machine defines a byte-code format, gcc uses multiple internal intermediate
formats, and abstract machines such as the lambda calculus and PRAM exist. However, those
intermediate formats have several short-comings. Their semantics imply a number of processors.
The JVM, for example, implies a single processor (thread), with instructions that explicitly

create additional processors (threads). The lambda calculus also implies the creation of short-
lived processors (each lambda reduction can be viewed as a one-use processor), and the call-by-
name semantics allow some overlap of the existence of these. But it is not amenable (without
modification) to easily defining and coordinating a large number of independent parallel tasks.
The shortcomings of PRAM have been detailed elsewhere.

Other parallel frameworks exist, such as MPI, CSP, and pi-calculus. These each define a
means of controlling interactions between processors. For example, MPI exposes explicitly the
existence of processors between which messages are sent. CSP and pi-calculus likewise define
processors (sequential processes) that communicate. Each process is a lambda-calculus abstract
machine with well-defined ordering between communication events and is a single processor.
Thus, these other intermediate formats are not invariant to the number of physical processors.
Invariance, here, means that the number of physical processors the code runs on is choosable
independently of the code contents.

Source languages are important for programmer productivity. It is important to have a
familiar, natural, high-level language that compiles to the intermediate format. Imperative,
object oriented and ML like languages have all been designed for compilation to the proposed
intermediate format. A single, simple, extension is needed for Java-like polymorphic behavior,
and a second for higher-order functions with a polymorphic type system such as in OCAML.
The languages can be designed to expose the circuit nature of the intermediate format to varying
degrees. More exposure of the circuit-nature provides more opportunity for efficiency, but the
essential flavor of the language stays intact. For example, CTJava is a backwards-compatible
version of Java that compiles down to the proposed intermediate format.

6 Conclusion

This paper has shown the operational semantics for the circuit-format used to distribute pro-
grams in the CodeTime Parallel Software Platform. These semantics have been presented in
terms of extended semantic “machinery.” The new machinery allows expressing side-effects
within the rules themselves, and circuit-like behavior, while still maintaining a syntax-directed
framework.

Bibliography

[1] G. Berry and G. Boudol. The chemical abstract machine . ACM Press, 1989.

12 Section

[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall,
and Yuli Zhou. Cilk: an efficient multithreaded runtime system. SIGPLAN Not., 30(8):207–216, 1995.

[3] B. Chamberlain, S. Choi, E. Lewis, C. Lin, L. Snyder, and W. Weathersby. Zpl’s wysiwyg performance
model. hips , 00:50, 1998.

[4] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal
Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach to non-uniform cluster
computing. In OOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object oriented

programming, systems, languages, and applications , pages 519–538. ACM Press, 2005.

[5] R. Ducournau, M. Habib, M. Huchard, and M. L. Mugnier. Proposal for a monotonic multiple inheritance
linearization. In OOPSLA ’94: Proceedings of the ninth annual conference on Object-oriented programming

systems, language, and applications , pages 164–175. ACM Press, 1994.

[6] S. Fortune and J. Wyllie. Parallelism in random access machines. STOC ’78: Proceedings of the tenth

annual ACM symposium on Theory of computing , pages 114–118, 1978.

[7] M. P. I. Forum. MPI: A Message-Passing Interface Standard . 1994.

[8] David Gelernter. Generative communication in linda. ACM Trans. Program. Lang. Syst., 7(1):80–112,
1985.

[9] Sean Halle. A mental framework for use in creating hardware-independent parallel languages.
http://codetime.sourceforge.net/content/CodeTiime_Theoretical_Framework.pdf.

[10] Wilhelm Hasselbring. Programming languages and systems for prototyping concurrent applications. ACM
Comput. Surv., 32(1):43–79, 2000.

[11] Paul Hilfinger and et. al. The titanium project home page. http://www.cs.berkeley.edu/pro-

jects/titanium.

[12] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM , 21(8):666–677,
1978.

[13] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming lan-
guages. ACM Comput. Surv., 36(1):1–34, 2004.

[14] C. H. Koelbel, D. Loveman, R. Schreiber, and G. Steele Jr. High Performance Fortran Handbook . MIT
Press, 1993.

[15] J McGraw, S. Skedzielewski, S. Allan, and R Odefoeft. SISAL: Streams and Iteration in a Single-Assign-

ment Language: Reference Manual Version 1.2 . Lawrence Livermore National Laboratory, 1985. Manual
M-146 Rev. 1.

[16] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Computer Science .
Springer-Verlag, 1980.

[17] A. P. Reeves. Parallel pascal – an extended pascal for parallel computers. Journal of Parallel and Dis-

tributed Computing , 1:64–80, aug 1984.

[18] David B. Skillicorn and Domenico Talia. Models and languages for parallel computation. ACM Comput.

Surv., 30(2):123–169, 1998.

Bibliography 13

