
Speculative Execution in a Peer-to-Peer Run-Time

System

by Sean Halle

Abstract

An economically attractive infrastructure for parallel software is important for the continuing health

of the computer industry. We have previously suggested the CodeTime platform as a blueprint for

such an infrastructure. One element of this platform is a virtual server, which defines a computation

model. Implementing this computation model requires some form of run-time system.

In this paper, we present a peer-to-peer run-time system for the CodeTime platform.

The run-time system is hierarchical, to allow scaling. It’s overlay network is organised into a tree-

graph with all children of a single node fully interconnected. A simple analytic model suggests that

the number of control messages per peer increases logarithmically with the number of computing

nodes in the system.

The control protocol is based upon the principle of speculative execution to increase efficiency.

Each child of a node independently calculates the task of every other child in its group. In this way,

both sender and receiver are expecting communication without exchanging any control messages, in

particular no synchronization protocol is used in this system. Each peer in a group maintains iden-

tical state by sending a notice, when it completes a task, to each other member of the group. Thus,

actions may be taken by a peer optimistically, in the expectation that its state for the other peers is

correct. If a peer receives an unexpected request to receive data, it knows that a difference exists

between its state and the sender’s, and initiates a resolution protocol.

We discuss the implementation of this run-time system and give results showing its correct opera-

tion.

1 Introduction.

The generation currently under development for all four major lines of microprocessor are either multi-
core, multi-threaded, or both. The number of threads on a chip is expected to double every 18 months.
Therefore, future applications must be flexible in the number of hardware threads they efficiently make
use of. Developing applications with this property has proven problematic.

The economic history of the computer industry has shown that the ability to run old software with
reasonable efficiency on new machines is a powerful force. The continued existence of the x86 instruction
set is testament to this. Internally, the Pentium processors implement a custom RISC-style instruction
set, yet, this inner core is still surrounded by a superfluous shell that translates x86 instructions into this
internal RISC format. Many have estimated that processing could be improved by 50% or more by elimi-
nating this shell. Yet it persists. The reason lies in the economics of software distribution. Customers
do not want to buy and re-install new software each time they upgrade their machine.

For parallel software, an equivalent of the x86 instruction set has not been found. Abstract machines
have been suggested, but have proven too inefficient in practice.

The CodeTime platform introduces a computation model which may have the desired properties. It
modifies and extends the dataflow computation model by removing the model’s implied constraints on the
order of operations, and replacing them with a programmer-defined set of constraints. The rest of the
platform is put in place to support this extension and derive the benefits enabled by this extension.

2 Background

The CodeTime platform consists of a virtual server definition, a family of source languages, and a devel-
opment environment which supports and implements some of the source-language features.

1



The virtual server appears to users as a single machine, yet may have any number of physical pro-
cessing nodes behind this interface. The “processor” of this machine is a mutable circuit. Code compiled
from source specifies a particular set of circuit elements and a wiring among these elements.

A virtual server is implemented separately on each hardware platform. One of the tasks of imple-
menting a virtual server instance is making some way for the hardware to behave as the specified circuit.
One way to do this is to split the behavior into static and dynamic.

The static behavior is compiled by a hardware-platform-specific back-end compiler. The output of
this compiler is a set of modules of machine-code, ready to execute. Embedded into this machine code
are calls to something which implements the dynamic behavior of the circuit.

The dynamic behavior of the circuit includes choosing which physical processor should execute each
module of compiled code. When a module has completed, another choice must be made for which pro-
cessor gets those results, and which module to apply to them. This dynamic behavior is implemented by
a run-time system.

To adapt to different numbers and types of physical processors, the platform must provide a means to
change the granularity of a computation. One way to adapt is to give the run-time system a way to
dynamically divide data into sizes which fit best on the hardware. One way to accomplish this is by using
a divide-compute-undivide pattern, and mapping all application code onto this pattern.

The semantics of the source language and the computation model allow the back-end compiler to
accomplish this mapping. The output from the compiler includes a machine-code module which divides
data into a set of chunks. The output also includes a machine-code module which takes a number of
result-chunks and reassembles them.

The semantics also support combining several circuit elements into a single conglomerate element.
The circuit elements are called code-units, and the conglomerate elements are called combined-units or
dashed-units. The back-end compiler chooses which circuit elements to combine according to the details
of the hardware. Each combined-unit is compiled as a single executable module.

The run-time system thereby receives a number of executable modules, including one which divides
data, one which “undivides” data, and number which perform steps in the computation. At the end of the
execution of each module, control passes back to the run-time system.

The platform supports profile information for these modules, which gives the run-time the ability to
estimate how long a given size chunk will take to pass through a given executable module. This is useful
when making the decisions about how large each chunk should be and which processor it should run on.

This paper gives the details of the implementation of one kind of run-time system, for hardware made
up of a number of processors interconnected by a network. High-end computers, networks of worksta-
tions, and grid computing are classic examples of this hardware model. It might also be useful for
Shared-memory servers, such as Sun enterprise class machines, which fit this hardware model when the
memory hierarchy is perceived by the compiler and run-time as a very flexible network. Multicore proces-
sors also fit this framework, and will progressively fit it better over the next ten years, which is the antici-
pated timespan over which platforms such as CodeTime will become adopted.

Section 3 discusses related work, section 4 gives an overview of the run-time system and communica-
tion protocol, section 5 discusses the details of this implementation, section 6 gives screen shots produced
by this implementation correctly completing one divide-compute-undivide sequence, section 7 suggests
improvements to the run-time system, and section 8 restates some important points from the paper.

3 Related Work

(Note to reader, the author has run out of time. This section is left blank, and the bibliography has not
been gathered. These will both be corrected over the coming months as this paper and the work are
readied for submission for publication.)

2 Section 3



4 Overview

The run-time system is a symmetric peer-to-peer system, by which is meant that no services are central-
ized. All functions of the system may be performed by any of the processing nodes at a given moment.
The term peer has meaning, potentially confusingly, in two different senses. In the hardware sense, a
peer is a processing-node. In the software sense, a peer is a virtual entity. One or multiple of these may
be assigned to a single processing-node. In this paper, processing-nodes are always referred to as pro-
cessing-nodes, and the term peer always means the virtual-software-entity.

Peers are organized into an overlay network. The overlay network is a tree-graph. Each node in the
tree-graph is a peer, and each child of a node is fully connected to each other child of that node. The
peers are mapped onto processing-nodes. A one-to-one relationship exists between each processing-node
and a leaf-peer. A given processing-node may also have a peer which is a member of any level(s) of the
hierarchy above the leaves. If a processing-node has multiple peers, no particular relationship in the tree
must exist among that processing-node’s peers.

The peers each keep the status of every other peer in its peer-group (the peers it is fully-connected to).
Each time a peer completes some unit of work, it sends a message to every other member of its peer-
group. When a peer receives a completion message, it updates its status table and decides what action, if
any, to take as a result.

This way, all the peers may calculate the action which each other peer should take as a result of every
completion message. When a peer receives a request for data-transfer from another, it calculates whether
it agrees that this transfer should take place. If it does not, it initiates a discrepency-resolution process.

A computation begins when the root peer is handed a set of data to compute the result of. The root
chooses one of its children to perform the un-division process. The root broadcasts this choice, along with
meta-information about the data, to each child-peer.

All the peers in the group then calculate how to divide up the data, and which piece they should take.
Each peer then requests their piece from the data-owner, who could be anywhere in the network. The
data-owner responds with that piece of data. The peer then applies the first code-unit to its piece of
data. When done, that peer tells all the others in the group, and the parent. All the peers then decide
whether this piece allows one of them to collect an input set, and which peer should get it.

If it is possible to gather a complete input set, then the one which should goes ahead and requests the
result pieces from the others. When it has them all, it applies the appropriate combined-unit to that
input-set. When done, it notifies the other peers, which all then repeat the process of deciding whether
an input set can be formed and which peer should get it.

When a result comes out of the last combined-unit, the peer which produced it sends out a completion
message, then sends the result to the designated un-divider peer. The un-divider peer applies the un-
divide-unit to the result. When done, it sends out a completion message, then checks whether all the
results have been gathered.

When all the results have been gathered into the un-divider, the un-divider peer sends the combined-
result to the parent-peer. The other peers in the group will see the completion message and deduce that
the parent has been given the result.

That parent then informs its peer-group that a result is complete, and things proceed on this level in
the same fashion as they did on the leaf-level. The one difference is that the peers above the leaf-level
may only delegate computation of combined-units which contain their own divide-compute-undivide pat-
tern. Not all possible combined-units will have this. Thus, the above-peers have fewer control-parallelism
choices available to them. For this reason, the combined-units which the compiler makes for the higher-
level peers will usually be different than the combined-units it makes for the leaf-level peers. This maxi-
mizes the available control-parallelism at the leaf level.

When the root receives the result from the un-divider it delegated, it in turn hands that result back to
the requestor. The details of interaction between the root of the run-time system and the rest of the vir-
tual-server are available on the SourceForge site: http://codetime.sourceforge.net

Overview 3



5 Implementation

5.1 Composition of a peer

Each peer is composed of four pieces:

− A Server, which accepts all messages to the peer

− A Client, which sends all messages from the peer

− A Scheduler, which tracks the status of all the peers in the group and decides what action each of
them, including itself, sould take in response to each incoming message.

− A Worker, which applies combined-units to sets of data. The scheduler collects each set of data,
then hands that set to the worker, along with which combined-unit (compiler-generated executable
module) to apply.

The worker has no persistent state. What the scheduler gives the worker contains everything needed to
perform the computation. This is an important property. It is at the heart of why the run-time is able to
divide data into smaller pieces so easily. This property is enabled by the central idea the CodeTime plat-
form is built around, namely the addition of coordination-constraints to dataflow.

A peer also contains three blocking queues to connect the pieces. The queues are used one-direction-
ally. One goes from the scheduler to the client, one from scheduler to worker, and one from both worker
and server to the scheduler.

5.1.1 The Server

The server is a standard TCP/IP server, which listens on a port for clients attempting to connect. This
implementation has all the peers on the same processing-node, so they all have “localhost” as their host
name. Different peers are identified by the port they listen on.

The server and client communicate serialized RTMsg objects. When one is received, the server places
it on the queue to the scheduler.

5.1.2 The Client

The client takes message objects off the queue from the scheduler, takes the “to” port out of it, establishes
a connection to the server listening on that port, and sends the object.

5.1.3 The Scheduler

The scheduler takes messages off the queue going to it and decides what action to take as a result. It
implements all of the communication protocol logic, and all of the decision making about which peer
should perform which operation. This decision making which assigns actions to peers is a scheduling
algorithm.

The communication protocol is heart of what defines this run-time system.

The scheduling algorithm, however, is a separable piece. A wide variety of different algorithms may
be plugged in. This implementation uses an extremely simple algorithm which simply divides the
incoming data evenly among all the peers in the group. When a peer acts as a parent, it randomly
assigns one of the peers below it to be the undivider.

Thus, this scheduler does not take into account the status of the other peers in the group, and so the
discrepency resolution process is not yet implemented.

4 Section 5



The scheduler picks which of the combined-units should be applied to a piece of data. In the version
implemented, only three combined units exist: the divider, the “main” work-unit, and the undivider. The
scheduler picks the divider in response to a “here’s a chunk to divide up” (chainReqDataTakeMs-
gFromAbove) message from the parent. It picks the main work unit in response to a “here’s the piece you
requested”(respDataTakeMsgFromAny) from the owner of the chunk. It picks the undivider in response
to a “here’s a result to be undivided”(respDataTakeMsgFromSame) from one of the peers in the group.

5.1.4 The Worker

The worker models the compiler-generated executable modules by having a method for each of the three
units. The scheduler puts into the message it gives to the worker which of the units should be applied.
The worker then executes the appropriate method, giving it the data information from the incoming mes-
sage (reqWorkMsgFromSelf). The data is modelled as simply an integer, stating the size of the data.
When the method completes, it hands back the result-size, which the worker puts into a response message
(respWorkMsgFromSelf) that it then places into the queue going back to the scheduler.

5.2 The communication protocol

The communication between run-times is also one-directional. Clients inside the peer objects only send
messages, servers only receive. This organisation mirrors the asynchronous nature of the computation
model. This asynchrony of the computation model is also an important property. It is a reason that no
synchronization operations are needed among peers, making it profitable to take actions speculatively.
This property is enabled, also, by the coordination-extension to dataflow that the CodeTime platform is
built around.

5.2.1 The sequence of messages

The sequence goes:

→ Parent sends: ReqChainDataTakeMsgFromAbove To: all peers in the group below it

− Each peer independently calculates how to divide up the data. The msg contains meta-info
about the data, but not the actual data itself. In this impl, the data size is just divided by
the number of peers.

→ In response, Peers each send: ReqChainDataGiveMsgFromAny To: the owner of the data

− In this impl, no data actually moves. In a real impl, all requests would go back through the
chain. One of the higher-level peers in the chain would track the requests, to ensure that no
requests overlap, and all the data in the original piece is requested.

→ In response, data owner (the parent in this case) sends: RespDataTakeMsgFromAny To: requestor

− The data-owner just makes a new message with the same size. In the real system, it would
place the actual data into this response message.

→ In resp, each peer sends: ReqWorkMsgFromSelf To: worker

− The worker applies the combined-unit chosen by the scheduler to the data specified in the
message.

→ In resp, worker sends: RespWorkMsgFromSelf To: scheduler

− In this impl, it just sends back the size of the data.

Implementation 5



→ In resp, peer sends: InfoComplMsgFromSame To: each other peer in group

− When a peer receives this message, it only updates its copy of the status of the peers in the
group (including its own status). The status will be used in real implementations to inde-
pendently decide how to divide up data, and which peer should receive each completed
input-set.

→ The peer also sends: InfoComplMsgFromBelow To: the parent

− The parent also keeps the status of every peer in its child-group. It uses this to pick an
undivider. (Other method might be letting the group pick the undivider). It also keeps the
parent informed about the progress of the computation. In this impl, no status is kept, the
parent picks an undivider at random.

→ The peer also sends: RespDataTakeMsgFromSame To: the undivider (if peer is not undiv)

− When a peer produces a result from the last combined-unit, it sends that result to the un-
divider. It first checks whether it is itself the un-divider.

→ The peers which are not the undivider are now done sending messages in response to the original
from the parent.

→ Meanwhile, each time the undivider receives a piece it sends: ReqWorkMsgFromSelf To: worker

− The worker applies the un-divider-unit to the result.

→ In resp, worker sends: RespWorkMsgFromSelf To: scheduler

− This is the same sequence as when one of the combined-units completes, except that the
worker checks whether this is the last piece to be undivided (based upon info in the mes-
sage)

→ In resp, peer sends: InfoComplMsgFromSame To: each other peer (says an undivider done)

→ The peer also sends: InfoComplMsgFromBelow To: the parent (says an undivider done)

→ When the last piece is undivided, the peer sends the same info messages as before, then also sends:
RespDataTakeMsgFromBelow, which completes the sequence of steps.

− The parent gets this message, then treats it as if the parent itself had completed applying a
combined-unit to the data. Higher-level peers may only apply combined-units which contain
a divde-compute-undivide pattern inside them. Leaf-peers, however, may apply any arbi-
trary combined unit to data, because leaf peers do not sub-divide the data.

6 Results

Results were gathered for a system with four peers. One is a parent, three are in a peer-group below that
parent. The parent generates a canned “divide up this data” message (ReqChainDataTakeMs-
gFromAbove). It picks a random member of the peer-group to be the undivider, and sends all the peers
the same message.

The two figures show the output from two of the peers: the parent and the chosen undivider. It shows
the initial message going out from the parent, the activity of the messages between the group members,
and the final “here’s the result” coming back to the parent. (ignore messages 2 and 3 in the peer at 9901,
these are debug messages which the author forgot to turn off.)

6 Section 6



Figure 1.

Results 7



Figure 2.

8 Section 6



7 Improvements

7.1 Leaving pieces of larger chunks distributed across processing nodes

One improvement is to allow the data-chunks to remain divided, when convenient. In this scheme, the
data-chunks passed among higher-level peers would consist of lists of smaller chunks. The division of
these chunks would involve dividing up the lists. When such a chunk reaches a leaf-peer, that peer
requests one or a few of the elements of the list from peers holding the actual data. (note from author:
this blank space appears to be a bug in my version of TexMacs)

Improvements 9



This complicates the division and undivision process. In some cases, when nested loops exist in the
undivision-unit, for example, it may be advantageous to collect the pieces onto the undivider peer and
construct a single result-pieces. In this way, multiple sizes of data pieces may be included in a single
chunk.

Peers asking for the wrong piece must still be detected. This may be accomplished, for example, by
requiring that any division of a given list of data-pieces must have at least one higher-level peer which all
requests for the data-pieces pass through. The division algorithm would then decide and specify which
higher-level peer all piece-requests must pass through (in deterministic replicatable way).

This higher-level peer then gets the original list of pieces and tracks each request, to ensure that all
peers in a group came to the same conclusion about how to divide up the data.

Allowing the data-pieces, which make up a larger chunk, to stay on the leaves in this way may improve
performance. The performance gains would come from reducing redundant transfers of data. If the
larger chunks are physically constructed, then the pieces must be sent to the undivider machine. Now, if
this chunk is used in another input-set, it has to be divided up again. Each leaf-level peer getting a piece
will then request it from the undivider. Thus the actual data moves twice, once to the undivider, and
once again to the new leaf-level peer. On the other hand, with undividers which don’t require the con-
tents of the data, only meta-information about it, only a single transfer of the actual data takes place, at
the time the new leaf-level peer requests it.

7.2 Data retention for reliability, correctness, and failure detection

To prevent the loss of partial results due to the failure of a processing node, some scheme may be used
which retains “ancestors” of results until suitable downstream results are completed on distinct processing-
nodes. The idea is to have at least two nodes with a “recoverable” form of the data at all times. Thus, a
processing-node keeps data until it is confirmed that two other processing nodes now have some form that
the most recent results, on the third node, can be reproduced from the results on the second node.

The communication involved in this protocol would detect lost messages eventually, and allow recov-
ering from machines going down.

Recovery is possible if an invariant is maintained. The invariant says that if a descendant, call it A,
shares a processing-node with any ancestors of a second descendant, call it B, then A does not contribute
towards the reproducibility of B. Only when a set can be formed of descendants which have the reprodi-
cibility property for all lower-descedants of a given ancestor, can that ancestor be safely deleted. This
invariant is easier to calculate than might be guessed, because the flow-graph is fixed. The back-end com-
piler may calculate a static function which takes in a list of descendant result-pieces and processing-nodes
they reside on and return a yes or no answer for a given ancestor (possibly.. needs more analysis).

A simple way of saying this is that its a sort of worm-hole routing, where the tail of the worm dissa-
pears as the head makes progress. The complication is that the heads of many worms combine together.
To show the correctness of this method, it must be shown that the combined-head may be reproduced
from the middle-links. As long as enough middle links are on different processing-nodes from the com-
bined-head, the combined head may be lost. The middle-links are then used to reproduce it on another
processing node.

7.3 Delaying actions to increase their prediction accuracy

The utility of each action can be optimized by estimating prediction accuracy and modelling the cost of
misprediction. Tracking the statistics of flight times between peers can be used to estimate prediction

10 Section 7



accuracy. A given peer can then simply acts as though a particular message took longer to get there
before taking action implied by that message. In the meantime, any update messages with previous time-
stamps have a chance to arrive. The amount of time to wait between receiving a message and taking
action is determined by optimizing the utility of waiting.

The chance of misprediction decreases the longer a peer waits, and can be estimated using the flight-
time statistics.

The cost of misprediction also changes with time, and depends upon the type of message and the
called-for action. The cost of mispredicting a data-request action decreases with time because less net-
work capacity is used when the transfer time decreases, assuming the data transfer is still in progress
when the discrepancy is detected, also the collision rate decreases when fewer non-useful packets flow,
which increases the effective bandwidth for the correct transfers. The cost of mispredicting a computa-
tion action, however, is zero if it does not interfere with other, higher utility computation actions.

Making the computation queue in the worker a priority queue, which chooses the highest utility com-
putation next implements this. Older messages naturally gain higher utility due to their improved predic-
tion rate, which prevents starvation.

7.4 Redundancy of higher-level peers

For the sake of reliability, possibly performance and somewhat security, each higher-level peer may be
implemented with redundancy. In this case, it would be duplicated on several processing nodes, and the
duplicates participate in a voting scheme. The degree of replication would increase as the level in the
hierarchy increased, with root being the most widely replicated.

The increased reliability is self-evident.
Performance improvement would acrue in a large system, with hundreds of thousands of nodes, from

selecting a quorum of processing nodes close, in a network latency measure, to each other and to the data
under consideration. The replicated peer would also have higher throughput, due to multiple quorums
operating simultaneously on different processing-nodes.

The increased security would come from the ability to detect the processing nodes whose peers consis-
tenly give wrong answers. For example, this would catch virally infected nodes which were not involved
in a coordinated attack. The ability to detect misbehaving processing nodes may also serve as an element
in a more sophisticated security scheme.

8 Conclusion

We have seen how the central idea of CodeTime, the addition of coordination-constraints to dataflow, has
resulted in the useful properties: self-contained chunks of work, and asynchronous computation. We have
also seen how each property has been used to provide benefits.

Self-contained chunks of work allowed the divide-compute-undivide pattern that lets the granularity of
computation be changed dynamically. This benefits software economically via a one-size-runs-efficiently-
on-all distribution of code. Old code runs well on new machines, and bigger machines.

The asynchronous computation model lets the run-time system produce correct results without any
synchronization operations (footnote: time-stamps and the resolution process takes the place of syncs).
We have seen how this makes the speculative method shown here attractive. The speculative method has
allowed scaling to very large systems, due to the small number of control messages, and it allows opti-
mizing the computation by choosing the highest utility computation at each moment, which we have
shown is guaranteed to outperform, on average, a scheme which waits for certainty (an ack or a lock).
The asynchronous model also benefits distributed systems and high-end computers in which barrier opera-
tions are expensive.

Conclusion 11


