
The CodeTime Platform

for Parallel Software

Presented By

Sean Halle

Context
What is the Problem?

Parallel software which is efficient is difficult to develop and maintain

Parallel software which is efficient must have its source modified for new
hardware (and OS)

What is my Proposed Solution?
A computation model which adds a coordination extension to Large Grain
Dataflow

An all-inclusive platform built around that computation model

Outline of This Talk
Introduce the CodeTime platform

Focus on aspects interesting to Application Developers

Focus on detail for informed feedback from Compiler Researchers

Describe the platform:
Show elements of the platform

Describe the function of each element

Go in-depth on
Core idea == extending Large Grain Dataflow with coordination

A simple run-time system, the first working piece of the platform

Scope of the Platform

The CodeTime platform covers all interactions with software:

Creation (Source Language, IDE)

Translation (Source Compiler, Intermediate Format)

Testing (Test harness in the IDE)

Maintenance (IDE, language features, OS interf. Features)

Distribution (Intermediate Format, IDE, OS interface)

Installation (Back-end Compiler, Virtual Server)

Invocation (Virtual Server, OS interface)

Elements of the Platform

Three top-level components:

Virtual Server is the core of the platform:
Embodies the computation model

OS interface

Holds persistent data

(each “machine” has a virtual server written specifically for it)

CodeTime Platform

IDE Family of Source Languages Virtual Server

Platform's Interactions with Software

Creation

Translation

Testing

Maintenance

Distribution

Installation

Invocation

Programmer

Source
Format

Package the Distribution

Interm.
Format

Back-end Compiler

Distribution Format

Source Compiler

Persistent Storage

Binary executable files

Virtual
Server
Impl.

Source
Language

IDE

IDE
Visual Format

Profile
Info

Test
Harness

Perf.
Info.

Data

Detailed Elements of the Platform

Intro || Core Concepts

Effect of CodeTime Ext. to Dataflow

A1

A3+B3

A3+B3+C3+D3

C3+D3

Classic Dataflow

C3+D2

A2
A3

A4

B1

B2
B3

B4

C1

C2
C3

C4

D1

D2
D3

D4

A1

A1+B4

A1+B4+C3+D2

C3+D2

With CodeTime Extension

A2
A3

A4

B1

B2
B3

B4

C1

C2
C3

C4

D1

D2
D3

D4

What's Extension Buy? Why Care?
Starting with straight Dataflow, get:

No Side Effects

Large amounts of parallelism (Instr level parallelism)

Large Grain adds:
More familiar mental-model for programming

Translation to multi-processor machines more straight-forward

CodeTime extension plus memory model add:
Fewer constraints on order of execution, but still correct result

Thread-level parallelism

Declarative control of thread-level parallelism (easier to program)

Straight-forward change of code-granularity (at install-time)

Straight-forward change of data-granularity (at run-time)

A Core Concept: Thread as Data
Each function defines a custom “processor”

In C.T. save this processor-state with the data, rather than with the
code

Index vars, relation of data to other data, etc, travel with the data

Means position in execution = pos in circuit plus contents of data

Processor-centric lang:: position in execution = time:: syncs, guards...
control position in execution that threads get shared data.

CodeTime:: position in execution is data, not *time*:: control sharing
by conditions on data not *time order*

have data and entire state of the computation being performed on it, together

Pairing means self-contained “tasks”:: advance comp. a little bit at each location

Progress of task seen by location and data

“task” = thread:: notion of “thread” now passive data, rather than an active thing.

Threads in CodeTime
Processor

State

Main Mem

Thd1 Thd2 Thd3

Code Data

Thd1

Thd2

Thd1

Thd2

Thd3
Progress toward

completion

Atomic sequences of Instructions, separated by Scheduling decisions

Code Code Code

Thd1

Thd2

Thd3
progress toward

completion

Data3Thd3

Data2Thd2

Data1Thd1

Scheduling decisions are made at regular
time-intervals and at time when progress
reaches a sync point

Scheduling decisions are made each time data
moves

Instrs accumulate as time advances Instrs accumulate as position advances

s s

s

s s

s s

s

ss

ss

Core Ideas || BCTL Lang.

Introduction to BCTL

Base CodeTime Language

Low level: BCTL is to C.T. computation model as C is to processors

Compiles to CodeTime's circuit-based intermediate format

Visual language, intended for wysiwyg coding

Memory model = collection of separate address spaces (each
w/name)

Organised into Function-Units (code-units) and Hierarchy-Units

Tags, tag-code, and coord-code implement Dataflow extensions
Tags help hold current thread-state (for code-defined processor)

Coordination code declares when safe to join threads

What Code Looks Like
Structure of code apparent

Body of “function” visible

Link or copy: Link = Inheritance

Keyboard navigation

Quickly find code of interest

Can roll-up to see summary

Full-text search on summaries

Coders motivated – searches
useful to them

Coders motivated – see and use
summaries everyday

Example Program: Vector Reduction

Vector sliced into elems

Elem = separate thread

Pick two from input pool

Coord: pick two from In, call L and R

Fn: add value in R to L

Tag: add NumAcc in R to L
 check if sum == total
 no: output L to loop
 yes: output L to done

Value: float

NumAcc: int
total: const

ElemContainer

In

Loop Done

Put sum back into input pool

Until all Elems summed

Real Code
Separate vectors via vectID

Time is not defined

Any number of f() invocations
vectorElemsIn

ChooseInputSet
 { elem1 := tryOneUniqueFrom{ vectorElemsIn };
 elem2 := tryOneUniqueFrom{ vectorElemsIn };
 isAValidSetWhen
 { elem1.tag.vectID == elem2.tag.vectID;
 }
 }

ReduceVector(elem1, elem2)
 {
 elem1.val +=t elem2.val;
 elem1.tag.howManyAccumInThisCell +=t
 elem2.tag.howManyAccumInThisCell;
 when elem1.tag.howManyAccumInThisCell
 == elem1.tag.sizeOfVect Do
 { Output elem1 to done;
 }
 == anythingElse Do
 { Output elem1 to keepReducing;
 };
 }

keepReducing done

Parallelism comes from the
separate threads (one per elem)

order undefined => any pairing

Vs. Processor-centric: pairing
precisely defined (try in MPI)

Threads in CodeTime
Processor

State

Main Mem

Thd1 Thd2 Thd3

Code Data

Thd1

Thd2

Thd1

Thd2

Thd3
Progress toward

completion

Atomic sequences of Instructions, separated by Scheduling decisions

Code Code Code

Thd1

Thd2

Thd3
progress toward

completion

Data3Thd3

Data2Thd2

Data1Thd1

Scheduling decisions are made at regular
time-intervals and at time when progress
reaches a sync point

Scheduling decisions are made each time data
moves

Instrs accumulate as time advances Instrs accumulate as position advances

s s

s

s s

s s

s

ss

ss

BCTL Lang || Run-Time

A Divider

Peel Out Left & Right

Peel off a piece =
a range of rows

Add new pieces to package
for the pair those pieces from

Sched Chooses Num Pieces

Peel off a piece =
a range of cols

To Body

Pair of Matrices In

The Tree-Graph Hierarchy of Peers

Leaf-Peers

Upper-Level Peers

Peer Internals

Server

Worker

Client

Scheduler

Dividing Data and Getting Pieces
Perform Calc

Meta-Data passed down

Peers divide meta-data

Meta-piece passed down

Peers divide meta-piece

Each peer asks for its real-piece

Stream of persistent
data from inside
the virtual server
= network to disk

Stream of data
from outside
virtual server
= network to stub

Pin

Performing Work

Server

Worker

Client

Scheduler
Here's data

“here's data” message

Do Code-
Unit on data

Work done

send “FYI”
message

“FYI” message
includes which
code-unit and
the thread-state

Sending Out Completion Messages

I'm done,
FYI

I'm done,
FYI

I'm done,
FYI

I'm done,
FYI

I'm done,
FYI

Sending an Input-Set

Here's elem
of input-set

Decides should
send result

Expects
input-set

Here's elem
of input-set

Decides should
send result

All peers in group do same calc of who should
get the input-set and who should send results

Sending Results to the Undivider

I'm done,
here's result

Undivider

I'm done,
here's result

I'm done,
here's result

I'm done,
here's result

I'm done,
here's result

Run-Time Behavior of Code
Time is not defined

Any number of f() invocations

ChooseInputSet = contract
with scheduler (no order said!)

vectorElemsIn

ChooseInputSet
 { elem1 := tryOneUniqueFrom{ vectorElemsIn };
 elem2 := tryOneUniqueFrom{ vectorElemsIn };
 isAValidSetWhen
 { elem1.tag.vectID == elem2.tag.vectID;
 }
 }

ReduceVector(elem1, elem2)
 {
 elem1.val +=t elem2.val;
 elem1.tag.howManyAccumInThisCell +=t
 elem2.tag.howManyAccumInThisCell;
 when elem1.tag.howManyAccumInThisCell
 == elem1.tag.sizeOfVect Do
 { Output elem1 to done;
 }
 == anythingElse Do
 { Output elem1 to keepReducing;
 };
 }

keepReducing done

Code Invariant to number of
processors

Combine Code-Units via static
scheduling in back-end compiler

Works with variable-sized elems
= works in Divide-body-undivide

means run-time can change
size of incoming elems at will

Therefore

Scheduling and Load Balancing
Code invariant to scheduling and load balancing algorithms

Coord-constraints state:
min scheduler must do
max scheduler must do
scheduler & load balancer free to choose order (as long as constraints satisfied)

Easy to automatically change granularity via back-end comp. & sched.
Code invariant to number of processors

Data contains entire thread-state:: no shared code-state or data-state

Size of data (thread) chosen via divide-body-undivide pattern:: app-provided

Size of code-unit chosen via static scheduling in the back-end compiler

App-progr. provides variable number of variable size threads, and small code-units

Fit the machine by:: choose thread number = size; combine small loop-free code-
units into larger loop-containing composite-code-units:: adjust comp/comm.

Performance
Performance:: fit order of tasks, fit size of tasks to machine details

C.T.:: wide choice:: task order, task size (perhaps widest, maybe proof)

Best choice:: based on:: code characteristics, machine details:: at:: run-time

1st, simple implementation:: install-time is almost run-time
Network latency, network bandwith:: available to B.E. Compiler and scheduler

Processor speed:: machine details:: available at install-time and run-time

Profile info:: characteristics of code:: loop behavior:: avail BE compiler, scheduler

Source-code info:: characteristics of code:: divide-body-undivide, CCA:: avail C & S

Processor load:: choose best for next task:: machine details:: avail to scheduler, at r-t

Combine code-units to increase comp/comm ratio:: install-time

Choose data-size to tune comp/comm ratio:: run-time

Balance comp/comm:: comp overlaps comm | percent idle (freq sched)

Tying it All Together
Hardware Indep:: easy to automatically change granularity

Possible due to:
contract with sched,
self-contained threads (no side effects),
no complex checking of acceptable path (time order),
no transforms when change # threads (num of processors),
no search for how to divide (app provides),
combining small things easy:: breaking up large hard:: app gives small pieces

Hardware Indep:: “Reference” server:: OS indep:: persistence

Performance from
Back-end compiler and run-time:: full hardware knowl. & wide granularity choice

Easy to program:: only give contract with scheduler about data

Benefits of platform derive from more than just the extension to dataflow

